Of U ( 2 , 1 ) Representation Spaces

نویسنده

  • P. B. GOTHEN
چکیده

We calculate the Betti numbers of moduli spaces of representations of a universal central extension of a surface group in the groups U(2, 1) and SU(2, 1). In order to obtain our results we use the identification of this space with an appropriate moduli space of Higgs bundles and Morse theory, following Hitchin’s programme [11]. This requires a careful analysis of critical submanifolds which turn out to have a description using either symmetric products of the surface or moduli spaces of Bradlow pairs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 2 TOPOLOGY OF U ( 2 , 1 ) REPRESENTATION SPACES

The Betti numbers of moduli spaces of representations of a universal central extension of a surface group in the groups U(2, 1) and SU(2, 1) are calculated. The results are obtained using the identification of these moduli spaces with moduli spaces of Higgs bundles, and Morse theory, following Hitchin’s programme [14]. This requires a careful analysis of critical submanifolds which turn out to ...

متن کامل

Topology of U(2; 1) Representation Spaces

We calculate the Betti numbers of moduli spaces of representations of a universal central extension of a surface group in the groups U (2; 1) and S U (2; 1). In order to obtain our results we use the identiication of this space with an appropriate mod-uli space of Higgs bundles and Morse theory, following Hitchin's programme 11]. This requires a careful analysis of critical subman-ifolds which ...

متن کامل

Branching Theorems for Compact Symmetric Spaces 405 [

A compact symmetric space, for purposes of this article, is a quotient G=K, where G is a compact connected Lie group and K is the identity component of the subgroup of xed points of an involution. A branching theorem describes how an irreducible representation decomposes upon restriction to a subgroup. The article deals with branching theorems for the passage from G to K 2 K 1 , where G=(K 2 K ...

متن کامل

Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000